Conceptual Electronics Videos

This series of 24 videos manages to start from scratch and work its way up to Electromagnetism pretty much without math. One thing they could have improved though is the labelling. So while you watch the videos, keep in mind that:

I would probably also skip the second video, which I found a bit long and abstract. Here's a quick summary of it:

In mathematical terms, there are four equations (known as Maxwell's Equations) that explain all the electromagnetic phenomena we observe:

Name Math Description Pictures
Gauss' Law \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$ An electric charge, \$\rho\$, creates an electric field, \$\vec{E}\$, that points away from the charge and “disperses” to infinity
Gauss' Law of Magnetism \$$\vec{\nabla} \cdot \vec{B} = 0\$$ A magnetic field, \$\vec{B}\$, can not “disperse” to infinity the way an electric field can. Instead, magnetic field lines loop onto themselves. In other words: “magnetic charges” don't exist the way electric charges do.
Faraday's Law of Induction \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$ A changing magnetic field, \$\vec{B}\$, creates a “curly” electric field, \$\vec{E}\$ and vice-versa.
Ampere's Law \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$ An electric current, \$\vec{J}\$, and/or a changing electric field, \$\vec{E}\$, creates a “curly” magnetic field, \$\vec{B}\$