User Tools

Site Tools


howto:conceptual_electronics_videos

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
Last revisionBoth sides next revision
howto:conceptual_electronics_videos [2020/10/31 12:51] va7fihowto:conceptual_electronics_videos [2020/11/01 16:14] – [Conceptual Electronics Videos] va7fi
Line 5: Line 5:
   * Red particles are <fc #ff0000>positive</fc> charges   * Red particles are <fc #ff0000>positive</fc> charges
   * Blue particles are <fc #4682b4>negative</fc> charges   * Blue particles are <fc #4682b4>negative</fc> charges
-  * Purple arrows are <fc #800080>electric</fc> fields+  * Purple arrows are <fc #9400d3>electric</fc> fields
   * Green arrows are <fc #008000>magnetic</fc> fields.   * Green arrows are <fc #008000>magnetic</fc> fields.
  
Line 19: Line 19:
  
 |<100% - 17em - >| |<100% - 17em - >|
-^Name        ^  Math  ^Description ^Pictures((The pictures were taken from: [[wp>Electric_charge |Electric Charge]], [[wp>magnet|Magnet]], [[http://image1.slideserve.com/3268182/faraday-s-law-n.jpg |Faraday's Law]], [[http://mriquestions.com/uploads/3/4/5/7/34572113/____1682522_orig.gif |Ampere's Law]])) +^Name        ^  Math  ^Description ^Pictures | 
-|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  | An electric charge, \$\rho\$, creates an electric field, \$\vec{E}\$, that points away from the charge and "disperses" to infinity|{{:howto:electricfield.png?200}}| +|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  |An <fc #ff0000>electric charge</fc>, \$\rho\$, creates an <fc #9400d3>electric field, \$\vec{E}\$</fc>, that points away from the charge and "disperses" to infinity|{{:howto:maxwell1.png?200}}| 
-|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A magnetic field, \$\vec{B}\$, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. |{{:howto:magneticfield.png?200}}| +|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A <fc #008000>magnetic field, \$\vec{B}\$</fc>, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. |{{:howto:maxwell2.png?200}}| 
-|Faraday's Law of Induction |  \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$  |A changing magnetic field, \$\vec{B}\$,  creates a "curly" electric field, \$\vec{E}\$ and vice-versa. |{{:howto:faraday.jpg?200}}| +|Faraday's Law of Induction |  \$$\vec{\nabla} \times <fc #9400d3>\vec{E}</fc> = -\frac{\partial \vec{B}}{\partial t}\$$  |A <fc #008000>changing magnetic field, \$\vec{B}\$</fc>,  creates a <fc #9400d3>"curly" electric field, \$\vec{E}\$</fc> and vice-versa. |{{:howto:maxwell3.png?200}}| 
-|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An electric current, \$\vec{J}\$, and/or a changing electric field, \$\vec{E}\$, creates a "curly" magnetic field, \$\vec{B}\$|{{:howto:ampere.jpeg?200}}|+|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An <fc #ff0000>electric current, \$\vec{J}\$</fc>, and/or a <fc #9400d3>changing electric field, \$\vec{E}\$</fc>, creates a <fc #008000>"curly" magnetic field, \$\vec{B}\$</fc>|{{:howto:maxwell4.png?200}}|
  
  
  
howto/conceptual_electronics_videos.txt · Last modified: 2020/11/01 16:15 by va7fi