
Conceptual Electronics Videos

I just found a series of videos that animate various physics concepts. The first one I found was on the concept of impedance:

Last update: 2019/10/21 09:35

But this was #15 in a series of 24 videos. I just finished watching the first few and they basically managed to start from scratch and work their way up to Electro-Magnetism. Pretty cool! One thing they could have improved is the labelling:

- Red particles are positive charges
- Blue particles are negative charges
- Purple arrows are electric fields
- Green arrows are magnetic fields.

Also, this first video can seem overwhelming, with all these fields creating each other, but there's really only four rules:

Name	Math	Description
Gauss' Law	<pre>\$\$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$\$</pre>	An electric charge (right) creates an electric field that points away from the charge and "disperses" to infinity (left)
Gauss' Law of Magnetism	\$\$\vec{\nabla} \cdot \vec{B} = 0\$\$	A magnetic field (left) can not "disperse" to infinity the way an electric field can. In other words: "magnetic charges" don't exist the way electric charges do.
Faraday's Law of Induction	$\$ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	A changing magnetic field (right) creates a "curly" electric field (left) and vice-versa.
Ampere's Law	<pre>\$\$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$\$</pre>	An electric current and/or a changing electric field (right) creates a "curly" magnetic field (left)