Conceptual Electronics Videos

I just found a series of videos that animate various physics concepts. The first one I found was on the concept of impedance:

But this was \#15 in a series of 24 videos. I just finished watching the first few and they basically managed to start from scratch and work their way up to Electro-Magnetism pretty much without math. One thing they could have improved though is the labelling. So while you watch these, keep in mind that:

- Red particles are positive charges
- Blue particles are negative charges
- Purple arrows are electric fields
- Green arrows are magnetic fields.

Also, this first video can seem pretty overwhelming, with all these fields creating each other, but there's really only four rules that govern it all:

Name	Math	Description
Gauss' Law	$\$ \$$ Vec $\{\backslash$ nabla $\} \backslash$ cdot $\backslash \operatorname{vec}\{\mathrm{E}\}=$ \frac $\{\backslash$ rho\} $\{\backslash$ varepsilon_0\}\$\$	An electric charge (right) creates an electric field that points away from the charge and "disperses" to infinity (left)
Gauss' Law of Magnetism	\$\$\vec $\{\backslash$ nabla $\}$ \cdot $\backslash \operatorname{vec}\{\mathrm{B}\}=0 \$ \$$	A magnetic field (left) can not "disperse" to infinity the way an electric field can. In other words: "magnetic charges" don't exist the way electric charges do.
Faraday's Law of Induction	$\$ \$ \mid$ vec $\{\backslash$ nabla $\}$ \|times $\backslash \operatorname{vec}\{\mathrm{E}\}=-\mid$ frac $\{\backslash$ partial \|vec $\{\mathrm{B}\}\}\{$ partial t$\} \$ \$$	A changing magnetic field (right) creates a "curly" electric field (left) and vice-versa.
Ampere's Law	$\$ \$ \backslash$ vec $\{\backslash$ nabla $\}$ times $\backslash \operatorname{vec}\{B\}=\backslash m u _0$ \backslash Big(\vec $\{J\}+$ Ivarepsilon_0 0 \|frac $\{\backslash$ partial \|vec $\{\mathrm{E}\}\}\{$ partial t$\} \backslash$ Big) $\$ \$$	An electric current and/or a changing electric field (right) creates a "curly" magnetic field (left)

Together, these four equations (known as М Maxwell's Equations) account for all the electromagnetic phenomena we observe:

