User Tools

Site Tools


howto:conceptual_electronics_videos

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
howto:conceptual_electronics_videos [2020/10/05 16:12] va7fihowto:conceptual_electronics_videos [2020/11/01 16:15] (current) – old revision restored (2020/10/31 23:32) va7fi
Line 2: Line 2:
 ====== Conceptual Electronics Videos ====== ====== Conceptual Electronics Videos ======
  
-This [[https://www.youtube.com/playlist?list=PLkyBCj4JhHt9dIWsO7GaTU149BkIFbo5y |series of 24 videos]] manages to start from scratch and work its way up to Electromagnetism pretty much without math.  One thing they could have improved though is the labelling.  So while you watch this next video, keep in mind that:+This [[https://www.youtube.com/playlist?list=PLkyBCj4JhHt9dIWsO7GaTU149BkIFbo5y |series of 24 videos]] manages to start from scratch and work its way up to Electromagnetism pretty much without math.  One thing they could have improved though is the labelling.  So while you watch the videos, keep in mind that:
   * Red particles are <fc #ff0000>positive</fc> charges   * Red particles are <fc #ff0000>positive</fc> charges
   * Blue particles are <fc #4682b4>negative</fc> charges   * Blue particles are <fc #4682b4>negative</fc> charges
   * Purple arrows are <fc #800080>electric</fc> fields   * Purple arrows are <fc #800080>electric</fc> fields
   * Green arrows are <fc #008000>magnetic</fc> fields.   * Green arrows are <fc #008000>magnetic</fc> fields.
- 
-{{ youtube>XiHVe8U5PhU }} 
  
 I would probably also skip the second video, which I found a bit long and abstract.  Here's a quick summary of it: I would probably also skip the second video, which I found a bit long and abstract.  Here's a quick summary of it:
Line 21: Line 19:
  
 |<100% - 17em - >| |<100% - 17em - >|
-^Name        ^  Math  ^Description | +^Name        ^  Math  ^Description ^Pictures 
-|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  | An electric charge, \$\rho\$, creates an electric field, \$\vec{E}\$, that points away from the charge and "disperses" to infinity| +|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  |An <fc #ff0000>electric charge, \$\rho\$</fc>, creates an <fc #9400d3>electric field, \$\vec{E}\$</fc>, that points away from the charge and "disperses" to infinity|{{:howto:maxwell1.png?200}}
-|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A magnetic field, \$\vec{B}\$, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. | +|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A <fc #008000>magnetic field, \$\vec{B}\$</fc>, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. |{{:howto:maxwell2.png?200}}
-|Faraday's Law of Induction |  \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$  |A changing magnetic field, \$\vec{B}\$,  creates a "curly" electric field, \$\vec{E}\$ and vice-versa. | +|Faraday's Law of Induction |  \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$  |A <fc #008000>changing magnetic field, \$\vec{B}\$</fc>,  creates a <fc #9400d3>"curly" electric field, \$\vec{E}\$</fc> and vice-versa. |{{:howto:maxwell3.png?200}}
-|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An electric current, \$\vec{J}\$, and/or a changing electric field, \$\vec{E}\$, creates a "curly" magnetic field, \$\vec{B}\$|+|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An <fc #ff0000>electric current, \$\vec{J}\$</fc>, and/or a <fc #9400d3>changing electric field, \$\vec{E}\$</fc>, creates a <fc #008000>"curly" magnetic field, \$\vec{B}\$</fc>|{{:howto:maxwell4.png?200}}|
  
  
  
howto/conceptual_electronics_videos.1601939526.txt.gz · Last modified: 2020/10/05 16:12 by va7fi