User Tools

Site Tools


howto:conceptual_electronics_videos

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
howto:conceptual_electronics_videos [2020/10/31 11:41] – [Conceptual Electronics Videos] va7fihowto:conceptual_electronics_videos [2020/11/01 16:15] (current) – old revision restored (2020/10/31 23:32) va7fi
Line 19: Line 19:
  
 |<100% - 17em - >| |<100% - 17em - >|
-^Name        ^  Math  ^Description ^Pictures(([[wp>Electric_charge |Electric Charge]], [[wp>magnet|Magnet]])) +^Name        ^  Math  ^Description ^Pictures | 
-|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  | An electric charge, \$\rho\$, creates an electric field, \$\vec{E}\$, that points away from the charge and "disperses" to infinity|{{:howto:electricfield.png?200}}| +|Gauss' Law  |  \$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}\$$  |An <fc #ff0000>electric charge, \$\rho\$</fc>, creates an <fc #9400d3>electric field, \$\vec{E}\$</fc>, that points away from the charge and "disperses" to infinity|{{:howto:maxwell1.png?200}}| 
-|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A magnetic field, \$\vec{B}\$, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. |{{:howto:magneticfield.png?200}}| +|Gauss' Law of Magnetism |  \$$\vec{\nabla} \cdot \vec{B} = 0\$$  | A <fc #008000>magnetic field, \$\vec{B}\$</fc>, can not "disperse" to infinity the way an electric field can.  Instead, magnetic field lines loop onto themselves.  In other words: "magnetic charges" don't exist the way electric charges do. |{{:howto:maxwell2.png?200}}| 
-|Faraday's Law of Induction |  \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$  |A changing magnetic field, \$\vec{B}\$,  creates a "curly" electric field, \$\vec{E}\$ and vice-versa. | +|Faraday's Law of Induction |  \$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}\$$  |A <fc #008000>changing magnetic field, \$\vec{B}\$</fc>,  creates a <fc #9400d3>"curly" electric field, \$\vec{E}\$</fc> and vice-versa. |{{:howto:maxwell3.png?200}}
-|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An electric current, \$\vec{J}\$, and/or a changing electric field, \$\vec{E}\$, creates a "curly" magnetic field, \$\vec{B}\$|+|Ampere's Law|  \$$\vec{\nabla} \times \vec{B} = \mu_0 \Big(\vec{J} + \varepsilon_0 \frac{\partial \vec{E}}{\partial t} \Big)\$$  |An <fc #ff0000>electric current, \$\vec{J}\$</fc>, and/or a <fc #9400d3>changing electric field, \$\vec{E}\$</fc>, creates a <fc #008000>"curly" magnetic field, \$\vec{B}\$</fc>|{{:howto:maxwell4.png?200}}|
  
  
  
howto/conceptual_electronics_videos.1604169699.txt.gz · Last modified: 2020/10/31 11:41 by va7fi