howto:hambasics:sections:test
Differences
This shows you the differences between two versions of the page.
howto:hambasics:sections:test [2021/01/03 08:29] – [The Euler Identity] va7fi | howto:hambasics:sections:test [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Optional Math of Waves ====== | ||
- | This is a brief survey of the math required to analyze waves at the first or second year university level. | ||
- | |||
- | ===== Real numbers ===== | ||
- | If \$ (5) \times (5) = 25 \$ and \$ (-5) \times (-5) = 25 \$, what number (and it has to be the same number) can you put in the boxes so that: | ||
- | |||
- | \$$ \Box \times \Box = -25 \$$ | ||
- | |||
- | It turns out that nowhere on the //real// number line is there a number such that when you multiply it by itself you get a negative number since two positive numbers give a positive number, and two negative numbers also give a positive number. | ||
- | |||
- | But could we //invent// one? | ||
- | |||
- | |||
- | ===== Complex Numbers ===== | ||
- | Let's create an imaginary number called \$ i \$ such that: | ||
- | |||
- | \$$ i = \sqrt{-1} \qquad \Rightarrow \qquad i^2 = -1 \$$ | ||
- | |||
- | Even though \$ i \$ is nowhere on the real line (in math, we say that: \$ i \not\in \mathbb{R} \$), we can none-the-less perform interesting mathematical operations with it: | ||
- | * We can add it to a real number and create a //complex// number: | ||
- | |||
- | \$$(1 + i) \$$ | ||
- | |||
- | * We can multiply complex numbers together: | ||
- | |||
- | \begin{align*} | ||
- | (1+i)^2 &= 1 + 2i + i^2 \\ | ||
- | &= 1 + 2i - 1 \\ | ||
- | &= 2i | ||
- | \end{align*} | ||
- | |||
- | * We can find roots: | ||
- | |||
- | \begin{equation*} | ||
- | z^4 = 16 \Rightarrow z^2 = \left\{ \begin{array}{rl} 4 \Rightarrow z &= \pm 2 \\ | ||
- | -4 \Rightarrow z &= \pm 2i \end{array} \right. | ||
- | \end{equation*} | ||
- | |||
- | ==== A Little Philosophy ==== | ||
- | If these weird numbers follow all of the algebra rules without inconsistencies, | ||
- | |||
- | In a certain way, negative numbers are just as weird as complex numbers: after all, we know what 5 cars look like, but −5 cars? | ||
- | |||
- | |||
- | ===== The Complex Plane ===== | ||
- | To represent a complex number graphically, | ||
- | |||
- | You can move the point around to see what the polar representation \$ (r \angle \theta) \$ is. | ||
- | |||
- | {{ggb>/ | ||
- | |||
- | To convert between the Cartesian \$(a,b) \$ and the Polar \$ (r \angle \theta) \$ representations, | ||
- | |||
- | ^ \$$ a + ib \rightarrow r\angle \theta \$$ ^ \$$ r\angle \theta \rightarrow a+ib \$$ | | ||
- | | \$$ r^2 = a^2 + b^2 \$$ | \$$ a = r\cos\theta \$$ | | ||
- | | \$$ \tan \theta = \dfrac{b}{a} \$$ | \$$ b = r\sin\theta \$$ | | ||
- | |||
- | ==== Roots ==== | ||
- | The complex plane allows us to take another look at how to find roots of the form \$ z^n = w \$. For example, if we set \$ w = 9 \$ and \$ n = 2 \$ on the graph below, we'll see that the roots to \$z^2 = 9 \$ are \$ z = \pm 3 \$. | ||
- | |||
- | {{ggb>/ | ||
- | |||
- | Without using the graph above, what do you expect the solution(s) to \$ z^3 = 8 \$ will be? That is, what number(s), when multiplied by itself three times gives 8? | ||
- | |||
- | Now move \$ w = 8 \$ and \$n = 3 \$ to have a look at the solutions. | ||
- | |||
- | < | ||
- | {{ complexroots.png? | ||
- | So z = 2 was to be expected since \$ 2^3 = 8 \$ but it looks like there' | ||
- | |||
- | To find them, we first notice that the three solutions are spread out evenly around the circle, that is they are 120° apart. | ||
- | So in polar coordinates, | ||
- | |||
- | We can now convert them to Cartesian: | ||
- | * \$z = 2\angle 0^\circ = \big(2\cos(0^\circ), | ||
- | * \$z = 2\angle 120^\circ = \big(2\cos(120^\circ), | ||
- | * \$z = 2\angle 240^\circ = \big(2\cos(240^\circ), | ||
- | |||
- | Let's check that the second solution works: | ||
- | \begin{align*} | ||
- | (-1 + i\sqrt{3})^3 &= (-1 + i\sqrt{3})\cdot(-1 + i\sqrt{3})(-1 + i\sqrt{3}) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot\big(1 -2i\sqrt{3} +(i^2)(3)\big) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot\big(1 -2i\sqrt{3} +(-1)(3)\big) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot(-2 -2i\sqrt{3}) \\ | ||
- | &= 2 + 2i\sqrt{3} - 2i\sqrt{3} -(2)i^2(3) \\ | ||
- | &= 2 -(2)(-1)(3) \\ | ||
- | &= 2 + 6 \\ | ||
- | &= 8 | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | \\ | ||
- | |||
- | |||
- | ===== The Euler Identity ===== | ||
- | The Euler identity exposes a deep relationship between trigonometric and exponential functions((Note, | ||
- | |||
- | \$$ e^{i \theta} = \cos \theta + i \sin \theta \$$ | ||
- | |||
- | Let's use two different ways to verify that this mysterious identity works. | ||
- | |||
- | ==== The Derivatives ==== | ||
- | If we separate this identity into two functions and take their derivatives, | ||
- | \begin{align*} | ||
- | && f(\theta) &= e^{i \theta} &\text{ & }&& g(\theta) &= \cos \theta + i \sin \theta \\ | ||
- | \Rightarrow && f' | ||
- | \Rightarrow && f' | ||
- | \end{align*} | ||
- | |||
- | We know that there' | ||
- | |||
- | ==== Taylor ==== | ||
- | Another method to verify the Euler identity is to use Taylor series: | ||
- | |||
- | \begin{align*} | ||
- | e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots \\ | ||
- | \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \\ | ||
- | \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots | ||
- | \end{align*} | ||
- | |||
- | - Replace \$ x \$ with \$ i \theta \$ in the Taylor series of \$ e^x \$ | ||
- | - Replace \$ x \$ with \$ \theta \$ in the Taylor series for \$ \sin x \$ and \$ \cos x \$ | ||
- | - Add the Taylor series of \$ \cos \theta \$ and \$ i \sin \theta \$ together and you'll get the Taylor series for \$ e^{i \theta} \$ | ||
- | |||
- | |||
- | ==== Exercises ==== | ||
- | * Use the Euler identity to get the following two useful results: | ||
- | |||
- | \$$ \cos \theta = \dfrac{e^{i \theta} + e^{-i \theta}}{2} \qquad \text { et } \qquad \sin \theta = \dfrac{e^{i \theta} - e^{-i \theta}}{2i} \$$ | ||
- | |||
- | * Use the Euler identity to show that: | ||
- | |||
- | \begin{align*} | ||
- | \cos (\theta + \phi) &= \cos \theta \cos \phi + \sin \theta \sin \phi\\ | ||
- | \sin (\theta + \phi) &= \sin \theta \cos \phi + \cos \theta \sin \phi | ||
- | \end{align*} | ||
- | |||
- | * Use the two earlier results to show that: | ||
- | |||
- | \$$ \sin (\theta + \Delta \theta) + \sin (\theta - \Delta \theta) = 2 \cos \Delta \theta \sin \theta \$$ | ||
- | |||
- | |||
- | ===== Équations différentiels ===== | ||
- | |||
- | Dans la physique des ondes, on aura bientôt à trouver la solutions d'une équation différentiel de ce type: | ||
- | \$$ a \ddot{x}(t) + b \dot{x}(t) + c x(t) = 0 \$$ | ||
- | |||
- | Dans nos applications, | ||
- | |||
- | |||
- | \$ \begin{align*} | ||
- | & x (t) = e^{rt} \\ | ||
- | \Rightarrow \qquad & \dot{x}(t) = r e^{rt} \\ | ||
- | \Rightarrow \qquad & \ddot{x}(t) = r^2 e^{rt} | ||
- | \end{align*} \$ | ||
- | |||
- | et notre équation différentiel devient: | ||
- | |||
- | \$ \begin{align*} | ||
- | & a \ddot{x}(t) + b \dot{x}(t) + c x(t) = 0 \\ | ||
- | \Rightarrow \qquad & a (r^2 e^{rt}) + b (r e^{rt}) + c (e^{rt}) = 0 \\ | ||
- | \Rightarrow \qquad & e^{rt} (a r^2 + b r + c ) = 0 \\ | ||
- | \Rightarrow \qquad & a r^2 + b r + c = 0 | ||
- | \end{align*} \$ | ||
- | |||
- | \$ \Rightarrow \qquad r = - \dfrac{b}{2a} \pm \dfrac{\sqrt{b^2 - 4ac}}{2a} \$ | ||
- | |||
- | Puisque \$ r \$ contient une racine carré, il peut être réel, ou complexe. Pour simplifier la notation, disons que: \$ \alpha = \dfrac{b}{2a} \qquad \text{et} \qquad \beta = \dfrac{\sqrt{|{b^2 - 4ac}|}}{2a} \$ | ||
- | |||
- | Nous pourrons donc dire que: \$ \begin{equation*} r = \left\{ \begin{array}{rl} -\alpha \pm \beta & \text{si } b^2 - 4ac > 0,\\ | ||
- | | ||
- | |||
- | Examinons les deux cas en plus de détails. | ||
- | |||
- | === Cas 1: === | ||
- | Quand \$ b^2 - 4ac > 0 \$ , \$ r \$ est réel et la solutions général sera: | ||
- | |||
- | \$ \begin{align*} | ||
- | x(t) &= A_1 e^{r_1 t} + A_2 e^{r_2 t} \\ | ||
- | &= A_1 e^{( -\alpha + \beta) t} + A_2 e^{( -\alpha - \beta) t} \\ | ||
- | &= A_1 e^{-\alpha t} e^{\beta t} + A_2 e^{-\alpha t} e^{-\beta t} | ||
- | \end{align*} \$ | ||
- | |||
- | \$$ x(t) = e^{-\alpha t} ( A_1 e^{\beta t} + A_2 e^{-\beta t} ) \$$ | ||
- | |||
- | C'est normal d' | ||
- | |||
- | === Cas 2: === | ||
- | Quand \$ b^2 - 4ac < 0 \$ , \$ r \$ est complexe et nous utiliserons la formule de Euler pour simplifier notre solutions. | ||
- | |||
- | \$ \begin{align*} | ||
- | x(t) &= A_1 e^{r_1 t} + A_2 e^{r_2 t} \\ | ||
- | &= A_1 e^{( -\alpha + i \beta) t} + A_2 e^{( -\alpha - i \beta) t} \\ | ||
- | &= A_1 e^{-\alpha t} e^{i \beta t} + A_2 e^{-\alpha t} e^{-i \beta t} \\ | ||
- | &= e^{-\alpha t} ( A_1 e^{i \beta t} + A_2 e^{-i \beta t} ) \\ | ||
- | &= e^{-\alpha t} \Big( A_1 \big(cos( \beta t) + i \sin( \beta t) \big) + A_2 \big(cos( -\beta t) + i \sin( -\beta t) \big) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( A_1 \big(cos(\beta t) + i \sin(\beta t) \big) + A_2 \big(\cos(\beta t) - i \sin(\beta t)\big)\Big) \\ | ||
- | &= e^{-\alpha t} \Big( (A_1 + A_2) \cos(\beta t) + i (A_1 - A_2) \sin(\beta t) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( a_1 \cos(\beta t) + a_2 \sin(\beta t) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( A \sin \phi \cos(\beta t) + A \cos \phi \sin(\beta t) \Big) | ||
- | \end{align*} \$ | ||
- | |||
- | Dans les deux dernière ligne, nous avons ré-écrit les constantes d' | ||
- | |||
- | \$ \begin{align*} | ||
- | a_1 &= A_1 + A_2 & , a_2 &= i(A_1 - A_2) \\ | ||
- | a_1 &= A \sin \phi & , a_2 &= A \cos \phi | ||
- | \end{align*} \$ | ||
- | |||
- | Pour finalement pouvoir utiliser une identité trigonométrique: | ||
- | |||
- | \$$ x(t) = A e^{-\alpha t} \sin(\beta t + \phi) \$$ | ||
- | |||
- | === Exemple === | ||
- | Nous avons donc deux types de solutions complètement différents qui dépendent de trois paramètres \$ a, b, c \$. Pour voir comment ces paramètres affectent le graphique, imaginons qu'une de nos conditions initiales est \$ \phi = \frac{\pi}{2} \$ . Ça veut dire que: | ||
- | |||
- | \$ \begin{align*} | ||
- | & a_1 = A \sin \pi/2 = A & & a_2 = A \cos \pi/2 = 0 \\ | ||
- | \Rightarrow \qquad & A_1 + A_2 = A & & A_1 - A_2 = 0 \\ | ||
- | \Rightarrow \qquad & A_1 = A/2 & & A_2 = A/2 | ||
- | \end{align*} \$ | ||
- | |||
- | Dans ce cas particulier, | ||
- | |||
- | \$ \begin{equation*} x(t) = \left\{ \begin{array}{rl} A e^{-\alpha t} \dfrac{e^{\beta t} + e^{-\beta t}}{2} & \text{si } b^2 - 4ac > 0 ,\\ | ||
- | A e^{-\alpha t} \cos(\beta t) & \text{si } b^2 - 4ac < 0 ,\\ | ||
- | \end{array} \right. \end{equation*} \$ | ||
- | |||
- | FIXME Geogebra |
howto/hambasics/sections/test.1609691364.txt.gz · Last modified: by va7fi