howto:hambasics:sections:test
Differences
This shows you the differences between two versions of the page.
howto:hambasics:sections:test [2021/01/03 13:19] – [The Complex Plane] va7fi | howto:hambasics:sections:test [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1 | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ====== Optional Math of Waves ====== | ||
- | This is a brief survey of the math required to analyze waves at the first or second year university level. | ||
- | |||
- | ===== Real numbers ===== | ||
- | If \$ (5)^2 = 25 \$ and \$ (-5)^2 = 25 \$, what number can you put in the box so that: | ||
- | |||
- | \$$ \Box ^2 = -25 \$$ | ||
- | |||
- | It turns out that there is no //real// number such that when you multiply it by itself you get a negative number, but could we invent an // | ||
- | ===== Complex Numbers ===== | ||
- | Let's create an // | ||
- | |||
- | |||
- | <WRAP center box 30em> | ||
- | \$$ i = \sqrt{-1} \qquad \Rightarrow \qquad i^2 = -1 \$$ | ||
- | </ | ||
- | |||
- | Even though \$ i \$ is nowhere on the real line (in math, we say that: \$ i \not\in \mathbb{R} \$), we can none-the-less perform interesting mathematical operations with it: | ||
- | * We can add it to a real number and create a //complex// number: | ||
- | |||
- | \$$(1 + i) \$$ | ||
- | |||
- | * We can multiply complex numbers together: | ||
- | |||
- | \begin{align*} | ||
- | (1+i)^2 &= 1 + 2i + i^2 \\ | ||
- | &= 1 + 2i - 1 \\ | ||
- | &= 2i | ||
- | \end{align*} | ||
- | |||
- | * We can find roots: | ||
- | |||
- | \begin{equation*} | ||
- | z^4 = 16 \Rightarrow z^2 = \left\{ \begin{array}{rl} 4 \Rightarrow z &= \pm 2 \\ | ||
- | -4 \Rightarrow z &= \pm 2i \end{array} \right. | ||
- | \end{equation*} | ||
- | |||
- | ==== A Little Philosophy ==== | ||
- | If these weird numbers follow all of the algebra rules without inconsistencies, | ||
- | |||
- | In a certain way, negative numbers are just as weird as complex numbers: after all, we know what 5 cars look like, but what does −5 cars mean? And yet, in certain context (like temperature), | ||
- | ===== The Complex Plane ===== | ||
- | In the same way that we can represent real numbers by a point on the real number line...((Number line picture from [[wp> | ||
- | |||
- | {{ numberline.png }} | ||
- | |||
- | ... we can also represent a complex number graphically on a complex plane by using the horizontal axis for the real part and the vertical axis for the imaginary part. For example, \$ (1 + i) \$ would be represented as a point 45° up the horizontal axis and \$ \sqrt{2} \$ away from the origin: | ||
- | |||
- | {{ggb>/ | ||
- | |||
- | You can move the point around to look at other complex numbers on the plane. | ||
- | |||
- | To convert between the Cartesian \$(a,b) \$ and the Polar \$ (r \angle \theta) \$ representations, | ||
- | |||
- | ^ \$$ a + ib \rightarrow r\angle \theta \$$ ^ \$$ r\angle \theta \rightarrow a+ib \$$ | | ||
- | | \$$ r^2 = a^2 + b^2 \$$ | \$$ a = r\cos\theta \$$ | | ||
- | | \$$ \tan \theta = \dfrac{b}{a} \$$ | \$$ b = r\sin\theta \$$ | | ||
- | |||
- | ==== Roots ==== | ||
- | The complex plane has many useful applications, | ||
- | |||
- | {{ggb>/ | ||
- | |||
- | Without using the graph above, what do you expect the solution(s) to \$ z^3 = 8 \$ will be? That is, what number(s), when multiplied by itself three times gives 8? | ||
- | |||
- | Now move \$ w = 8 \$ and \$n = 3 \$ to have a look at the solutions graphically, | ||
- | |||
- | < | ||
- | {{ complexroots.png? | ||
- | So \$z = 2\$ was to be expected since \$ 2^3 = 8 \$ but it looks like there' | ||
- | |||
- | To find them, we first notice that the three solutions are spread out evenly around the circle, that is they are 120° apart. | ||
- | So in polar coordinates, | ||
- | |||
- | We can now convert them to Cartesian: | ||
- | * \$z = 2\angle 0^\circ = \big(2\cos(0^\circ), | ||
- | * \$z = 2\angle 120^\circ = \big(2\cos(120^\circ), | ||
- | * \$z = 2\angle 240^\circ = \big(2\cos(240^\circ), | ||
- | |||
- | Let's check that the second solution works: | ||
- | \begin{align*} | ||
- | (-1 + i\sqrt{3})^3 &= (-1 + i\sqrt{3})\cdot(-1 + i\sqrt{3})(-1 + i\sqrt{3}) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot\big(1 -2i\sqrt{3} +(i^2)(3)\big) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot\big(1 -2i\sqrt{3} +(-1)(3)\big) \\ | ||
- | &= (-1 + i\sqrt{3})\cdot(-2 -2i\sqrt{3}) \\ | ||
- | &= 2 + 2i\sqrt{3} - 2i\sqrt{3} -(2)i^2(3) \\ | ||
- | &= 2 -(2)(-1)(3) \\ | ||
- | &= 2 + 6 \\ | ||
- | &= 8 | ||
- | \end{align*} | ||
- | |||
- | </ | ||
- | \\ | ||
- | |||
- | |||
- | ===== The Euler Identity ===== | ||
- | The Euler identity exposes a deep relationship between trigonometric and exponential functions((Note, | ||
- | \$$ e^{i \pi} = \cos (\pi) + i \sin (\pi) = -1 + 0i = -1\$$ | ||
- | \$$ \Rightarrow e^{i \pi} = -1\$$ | ||
- | which is amazingly beautiful because it relates \$ e = 2.71828... \$, \$i = \sqrt{-1} \$, \$\pi = 3.14159... \$, and \$-1\$ in the most surprising and elegant way.)): | ||
- | |||
- | <WRAP center box 30em> | ||
- | \$$ e^{i \theta} = \cos \theta + i \sin \theta \$$ | ||
- | |||
- | </ | ||
- | |||
- | Let's use two different ways to verify that this mysterious identity works. | ||
- | |||
- | ==== The Derivatives ==== | ||
- | If we separate this identity into two functions and take their derivatives, | ||
- | \begin{align*} | ||
- | && f(\theta) &= e^{i \theta} &\text{ & }&& g(\theta) &= \cos \theta + i \sin \theta \\ | ||
- | \Rightarrow && f' | ||
- | \Rightarrow && f' | ||
- | \end{align*} | ||
- | |||
- | We know that there' | ||
- | |||
- | ==== Taylor ==== | ||
- | Another method to verify the Euler identity is to use Taylor series: | ||
- | |||
- | \begin{align*} | ||
- | e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + \cdots \\ | ||
- | \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots \\ | ||
- | \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \cdots | ||
- | \end{align*} | ||
- | |||
- | - Replace \$ x \$ with \$ i \theta \$ in the Taylor series of \$ e^x \$ | ||
- | - Replace \$ x \$ with \$ \theta \$ in the Taylor series for \$ \sin x \$ and \$ \cos x \$ | ||
- | - Add the Taylor series of \$ \cos \theta \$ and \$ i \sin \theta \$ together and you'll get the Taylor series for \$ e^{i \theta} \$ | ||
- | |||
- | |||
- | ===== Euler Identity and Polar-Cartesian Representations ===== | ||
- | |||
- | In the previous section, we saw that a complex number \$z = a + ib \$ could be represented as a point \$(a, b)\$ on the complex plane, which could also be viewed in polar coordinates as \$r\angle \theta \$. We saw that to convert between the Cartesian \$(a,b) \$ and the Polar \$ (r \angle \theta) \$ representations, | ||
- | |||
- | ^ \$$ a + ib \rightarrow r\angle \theta \$$ ^ \$$ r\angle \theta \rightarrow a+ib \$$ | | ||
- | | \$$ r^2 = a^2 + b^2 \$$ | \$$ a = r\cos\theta \$$ | | ||
- | | \$$ \tan \theta = \dfrac{b}{a} \$$ | \$$ b = r\sin\theta \$$ | | ||
- | |||
- | This means that: | ||
- | |||
- | \begin{align*} | ||
- | z &= a + ib \\ | ||
- | &= r\cos\theta + i r\sin\theta \\ | ||
- | &= r\big( \cos\theta + i \sin\theta \big) \\ | ||
- | &= r e^{i\theta} | ||
- | \end{align*} | ||
- | |||
- | This offers another interpretation of the Euler identity as the algebraic conversion between Cartesian and Polar coordinates: | ||
- | |||
- | ^ | ||
- | ^ Graphical |\$$(a, b) \$$ |\$$ (r\angle \theta) \$$ | | ||
- | ^ Algebraic |\$$z = a + ib\$$ |\$$ z = re^{i\theta} \$$ | | ||
- | |||
- | This now allows us to simplify a lot of difficult mathematics. | ||
- | |||
- | \$$ | ||
- | z^3 = 8 = \left\{ | ||
- | \begin{array}{c} | ||
- | 8e^{0 i} \\ | ||
- | 8e^{2\pi i} \\ | ||
- | 8e^{4\pi i}\\ | ||
- | \vdots | ||
- | \end{array} | ||
- | \right. | ||
- | \$$ | ||
- | |||
- | \$$ | ||
- | \Rightarrow z = \left\{ | ||
- | \begin{array}{lcl} | ||
- | \left(8e^{0 i}\right)^{\frac{1}{3}} &=& 8^{\frac{1}{3}} e^{\frac{0}{3}} = 2\\ | ||
- | \left(8e^{2\pi i}\right)^{\frac{1}{3}} &=& 8^{\frac{1}{3}} e^{\frac{2\pi}{3}i} = 2 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right) = 2 \left(-\frac{1}{2} + i \frac{\sqrt{3}}{2}\right) = -1 + i\sqrt{3} \\ | ||
- | \left(8e^{4\pi i}\right)^{\frac{1}{3}} &=& 8^{\frac{1}{3}} e^{\frac{4\pi}{3}i} = 2 \left(\cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3}\right) = 2 \left(-\frac{1}{2} - i \frac{\sqrt{3}}{2}\right) = -1 - i\sqrt{3} \\ | ||
- | & | ||
- | \end{array} | ||
- | \right. | ||
- | \$$ | ||
- | |||
- | The weird part about looking at a simple number like 8 in polar coordinates on the complex plane is that it can be viewed as many different points piled up on top of one another depending on how many times we go around the circle: \$ 8 = 8e^{0i} = 8e^{2\pi i} = 8e^{4\pi i} = \cdots \$ So why did we stop after two turns? | ||
- | ===== Important Algebraic Results ===== | ||
- | * Use the Euler identity to get the following two useful results: | ||
- | |||
- | <WRAP center box 30em> | ||
- | \$$ \cos \theta = \dfrac{e^{i \theta} + e^{-i \theta}}{2} \qquad \text { & } \qquad \sin \theta = \dfrac{e^{i \theta} - e^{-i \theta}}{2i} \$$ | ||
- | </ | ||
- | |||
- | < | ||
- | * Modify the Euler identity to see what happens when the angle is \$ (-\theta) \$ | ||
- | |||
- | \begin{align*} | ||
- | && e^{i \theta} | ||
- | \Rightarrow && e^{i (-\theta)} &= \cos (-\theta) + i \sin (-\theta) \\ | ||
- | \Rightarrow && e^{-i \theta} &= \cos \theta - i \sin \theta | ||
- | \end{align*} | ||
- | |||
- | * Add the original Euler identity to the new one for \$ (-\theta) \$ and simplify: | ||
- | \begin{align*} | ||
- | && e^{i \theta} | ||
- | + && \underline{e^{-i \theta}} &= \underline{\cos \theta - i \sin \theta} \\ | ||
- | \Rightarrow && e^{i \theta} + e^{-i \theta} &= 2\cos \theta \\ | ||
- | \Rightarrow && \cos \theta &= \frac{e^{i \theta} + e^{-i \theta}}{2} \\ | ||
- | \end{align*} | ||
- | |||
- | * To get the second equation, take the original Euler identity and subtract the new one for \$ (-\theta) \$ from it and simplify: | ||
- | \begin{align*} | ||
- | && e^{i \theta} | ||
- | - && \underline{e^{-i \theta}} &= \underline{\cos \theta - i \sin \theta} \\ | ||
- | \Rightarrow && e^{i \theta} - e^{-i \theta} &= 2i\sin \theta \\ | ||
- | \Rightarrow && \sin \theta &= \frac{e^{i \theta} - e^{-i \theta}}{2i} \\ | ||
- | \end{align*} | ||
- | </ | ||
- | \\ | ||
- | |||
- | * Use the Euler identity to show that: | ||
- | |||
- | <WRAP center box 30em> | ||
- | \$$ | ||
- | \cos (\theta + \phi) = \cos \theta \cos \phi + \sin \theta \sin \phi\\ | ||
- | \sin (\theta + \phi) = \cos \theta \sin \phi + \sin \theta \cos \phi | ||
- | \$$ | ||
- | </ | ||
- | |||
- | < | ||
- | * Multiply the Euler identities for \$\theta\$ and \$\phi\$ and simplify. | ||
- | |||
- | \begin{align*} | ||
- | && e^{i \theta} | ||
- | \times && \underline{e^{i \phi}} | ||
- | \Rightarrow && e^{i \theta} e^{i \phi} &= \big(\cos \theta + i \sin \theta\big)\cdot \big(\cos \phi + i \sin \phi \big) \\ | ||
- | \Rightarrow && e^{i\theta + i\phi} | ||
- | \Rightarrow && e^{i (\theta + \phi)} | ||
- | \Rightarrow && e^{i (\theta + \phi)} | ||
- | \Rightarrow && e^{i (\theta + \phi)} | ||
- | \end{align*} | ||
- | |||
- | But the Euler identity for angle \$ (\theta + \phi) \$ is: | ||
- | \$$ | ||
- | e^{i (\theta + \phi)} = \color{green}{\cos(\theta + \phi)} + i\color{blue}{\sin(\theta + \phi)} | ||
- | \$$ | ||
- | |||
- | |||
- | So comparing the <fc # | ||
- | \$$ | ||
- | \color{green}{\cos(\theta + \phi) = \cos \theta \cos \phi - \sin \theta \sin \phi} \\ | ||
- | \color{blue}{\sin(\theta + \phi) = \cos \theta \sin \phi + \sin \theta \cos \phi} | ||
- | \$$ | ||
- | </ | ||
- | \\ | ||
- | |||
- | |||
- | * Use the two earlier results to show that: | ||
- | |||
- | <WRAP center box 30em> | ||
- | \$$ \sin (\theta + \Delta \theta) + \sin (\theta - \Delta \theta) = 2 \cos \Delta \theta \sin \theta \$$ | ||
- | </ | ||
- | |||
- | < | ||
- | * Use the last result for \$ \sin(\theta + \phi) \$ but replace \$ \phi \$ with \$ \Delta \theta \$ | ||
- | |||
- | \$$ | ||
- | \sin (\theta + \Delta \theta) = \cos \theta \sin \Delta \theta + \sin \theta \cos \Delta \theta | ||
- | \$$ | ||
- | |||
- | Similarily, | ||
- | \begin{align*} | ||
- | && \sin (\theta - \Delta \theta) & | ||
- | \Rightarrow && \sin (\theta - \Delta \theta) & | ||
- | \end{align*} | ||
- | |||
- | Adding both of these together, we get: | ||
- | \begin{align*} | ||
- | \sin (\theta + \Delta \theta) + \sin (\theta - \Delta \theta) & | ||
- | & \quad - \cos \theta \sin\Delta \theta + \sin \theta \cos \Delta \theta \\ | ||
- | &= 2\sin \theta \cos \Delta \theta | ||
- | &= 2\cos \Delta \theta \sin \theta | ||
- | \end{align*} | ||
- | </ | ||
- | \\ | ||
- | |||
- | ===== Équations différentiels ===== | ||
- | |||
- | Dans la physique des ondes, on aura bientôt à trouver la solutions d'une équation différentiel de ce type: | ||
- | \$$ a \ddot{x}(t) + b \dot{x}(t) + c x(t) = 0 \$$ | ||
- | |||
- | Dans nos applications, | ||
- | |||
- | |||
- | \$ \begin{align*} | ||
- | & x (t) = e^{rt} \\ | ||
- | \Rightarrow \qquad & \dot{x}(t) = r e^{rt} \\ | ||
- | \Rightarrow \qquad & \ddot{x}(t) = r^2 e^{rt} | ||
- | \end{align*} \$ | ||
- | |||
- | et notre équation différentiel devient: | ||
- | |||
- | \$ \begin{align*} | ||
- | & a \ddot{x}(t) + b \dot{x}(t) + c x(t) = 0 \\ | ||
- | \Rightarrow \qquad & a (r^2 e^{rt}) + b (r e^{rt}) + c (e^{rt}) = 0 \\ | ||
- | \Rightarrow \qquad & e^{rt} (a r^2 + b r + c ) = 0 \\ | ||
- | \Rightarrow \qquad & a r^2 + b r + c = 0 | ||
- | \end{align*} \$ | ||
- | |||
- | \$ \Rightarrow \qquad r = - \dfrac{b}{2a} \pm \dfrac{\sqrt{b^2 - 4ac}}{2a} \$ | ||
- | |||
- | Puisque \$ r \$ contient une racine carré, il peut être réel, ou complexe. Pour simplifier la notation, disons que: \$ \alpha = \dfrac{b}{2a} \qquad \text{et} \qquad \beta = \dfrac{\sqrt{|{b^2 - 4ac}|}}{2a} \$ | ||
- | |||
- | Nous pourrons donc dire que: \$ \begin{equation*} r = \left\{ \begin{array}{rl} -\alpha \pm \beta & \text{si } b^2 - 4ac > 0,\\ | ||
- | | ||
- | |||
- | Examinons les deux cas en plus de détails. | ||
- | |||
- | === Cas 1: === | ||
- | Quand \$ b^2 - 4ac > 0 \$ , \$ r \$ est réel et la solutions général sera: | ||
- | |||
- | \$ \begin{align*} | ||
- | x(t) &= A_1 e^{r_1 t} + A_2 e^{r_2 t} \\ | ||
- | &= A_1 e^{( -\alpha + \beta) t} + A_2 e^{( -\alpha - \beta) t} \\ | ||
- | &= A_1 e^{-\alpha t} e^{\beta t} + A_2 e^{-\alpha t} e^{-\beta t} | ||
- | \end{align*} \$ | ||
- | |||
- | \$$ x(t) = e^{-\alpha t} ( A_1 e^{\beta t} + A_2 e^{-\beta t} ) \$$ | ||
- | |||
- | C'est normal d' | ||
- | |||
- | === Cas 2: === | ||
- | Quand \$ b^2 - 4ac < 0 \$ , \$ r \$ est complexe et nous utiliserons la formule de Euler pour simplifier notre solutions. | ||
- | |||
- | \$ \begin{align*} | ||
- | x(t) &= A_1 e^{r_1 t} + A_2 e^{r_2 t} \\ | ||
- | &= A_1 e^{( -\alpha + i \beta) t} + A_2 e^{( -\alpha - i \beta) t} \\ | ||
- | &= A_1 e^{-\alpha t} e^{i \beta t} + A_2 e^{-\alpha t} e^{-i \beta t} \\ | ||
- | &= e^{-\alpha t} ( A_1 e^{i \beta t} + A_2 e^{-i \beta t} ) \\ | ||
- | &= e^{-\alpha t} \Big( A_1 \big(cos( \beta t) + i \sin( \beta t) \big) + A_2 \big(cos( -\beta t) + i \sin( -\beta t) \big) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( A_1 \big(cos(\beta t) + i \sin(\beta t) \big) + A_2 \big(\cos(\beta t) - i \sin(\beta t)\big)\Big) \\ | ||
- | &= e^{-\alpha t} \Big( (A_1 + A_2) \cos(\beta t) + i (A_1 - A_2) \sin(\beta t) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( a_1 \cos(\beta t) + a_2 \sin(\beta t) \Big) \\ | ||
- | &= e^{-\alpha t} \Big( A \sin \phi \cos(\beta t) + A \cos \phi \sin(\beta t) \Big) | ||
- | \end{align*} \$ | ||
- | |||
- | Dans les deux dernière ligne, nous avons ré-écrit les constantes d' | ||
- | |||
- | \$ \begin{align*} | ||
- | a_1 &= A_1 + A_2 & , a_2 &= i(A_1 - A_2) \\ | ||
- | a_1 &= A \sin \phi & , a_2 &= A \cos \phi | ||
- | \end{align*} \$ | ||
- | |||
- | Pour finalement pouvoir utiliser une identité trigonométrique: | ||
- | |||
- | \$$ x(t) = A e^{-\alpha t} \sin(\beta t + \phi) \$$ | ||
- | |||
- | === Exemple === | ||
- | Nous avons donc deux types de solutions complètement différents qui dépendent de trois paramètres \$ a, b, c \$. Pour voir comment ces paramètres affectent le graphique, imaginons qu'une de nos conditions initiales est \$ \phi = \frac{\pi}{2} \$ . Ça veut dire que: | ||
- | |||
- | \$ \begin{align*} | ||
- | & a_1 = A \sin \pi/2 = A & & a_2 = A \cos \pi/2 = 0 \\ | ||
- | \Rightarrow \qquad & A_1 + A_2 = A & & A_1 - A_2 = 0 \\ | ||
- | \Rightarrow \qquad & A_1 = A/2 & & A_2 = A/2 | ||
- | \end{align*} \$ | ||
- | |||
- | Dans ce cas particulier, | ||
- | |||
- | \$ \begin{equation*} x(t) = \left\{ \begin{array}{rl} A e^{-\alpha t} \dfrac{e^{\beta t} + e^{-\beta t}}{2} & \text{si } b^2 - 4ac > 0 ,\\ | ||
- | A e^{-\alpha t} \cos(\beta t) & \text{si } b^2 - 4ac < 0 ,\\ | ||
- | \end{array} \right. \end{equation*} \$ | ||
- | |||
- | FIXME Geogebra |
howto/hambasics/sections/test.1609708754.txt.gz · Last modified: by va7fi