User Tools

Site Tools


howto:hambasics:sections:wavemodulationmath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
howto:hambasics:sections:wavemodulationmath [2020/10/07 08:04] – ↷ Links adapted because of a move operation va7fihowto:hambasics:sections:wavemodulationmath [Unknown date] (current) – removed - external edit (Unknown date) 127.0.0.1
Line 1: Line 1:
-~~NOTOC~~ 
-|<100% ----- >| 
-|  [[..:home|Ham Basics]]  |  [[..:test|About The Test]]  |  [[..:reference|References]]  ^  [[..:sections|Study Sections]]  | 
-====== More Details: AM / FM ====== 
  
-Here are a few more details about the AM, SSB, and FM modulation schemes introduced on the [[wavemodulation |Wave Modulation]] page. 
- 
-For both AM and FM examples, we'll Let: 
-  * \$c(t) = \cos(2 \pi f_c t)\$ be the <fc #4682b4>radio carrier</fc> with frequency \$f_c\$ 
-  * \$s(t) = \cos(2 \pi f_s t)\$ be the <fc #ff0000>baseband audio signal</fc> with frequency \$f_s\$ 
- 
-{{  ..:am01.png  }} 
- 
-With the radio carrier frequency several times greater than the baseband audio signal. 
- 
- 
-====== AM ====== 
- 
-The resulting //Amplitude Modulated// radio wave is the **product** of the vertically shifted baseband signal and the radio carrier, which is also equal to the **sum** of the carrier and the two side bands: 
- 
-<WRAP centeralign> 
- 
-\begin{align} 
-\Big(s(t)+1\Big) \times c(t) &= \Big(\cos(2 \pi f_s t) + 1\Big) \times \cos(2 \pi f_c t) \\ 
-                 & \cos(2 \pi f_s t)\cos(2 \pi f_c t) + \cos(2 \pi f_c t)\\ 
-                 &= \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c + f_s) t\Big)}_\text{USB} + \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c - f_s) t\Big)}_\text{LSB} + \underbrace{\cos(2 \pi f_c t)}_\text{Carrier} 
-\end{align} 
- 
-</WRAP> 
- 
-In line 1, I distributed the bracket, which, in line 2, gave us the carrier (last term) and a product (first term).  To expend this product into the sum of the two side bands (line 3),  I added these two trig identities together: 
- 
-<WRAP centeralign> 
- 
-\begin{align} 
-\cos(A+B)  =& \cos(A)\cos(B) - \sin(A)\sin(B) \\ 
-\cos(A-B)  =& \cos(A)\cos(B) + \sin(A)\sin(B) \\ 
-\end{align} 
- 
-</WRAP> 
- 
-Which gives: 
- 
-<WRAP centeralign> 
- 
-\begin{align} 
-&\cos(A+B) + \cos(A-B) = 2 \cos(A)\cos(B) \\ 
-\Rightarrow &\cos(A)\cos(B) = \frac{1}{2}\cos(A+B) + \frac{1}{2}\cos(A-B) 
-\end{align} 
- 
-</WRAP> 
- 
-Use this animation to see what happens when you vary the individual frequencies.  You can use the check boxes to show or hide different waves. 
- 
-<html> 
-<center> 
-<script type="text/javascript" language="javascript" src=" 
-https://scarcs.ca/gbweb.js"></script> 
-<article class="geogebraweb" data-param-width="700" data-param-height="405"  
-data-param-showResetIcon="false" data-param-enableLabelDrags="false" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="false" data-param-useBrowserForJS="true" data-param-ggbbase64="UEsDBBQACAgIAFpyDUsAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICABacg1LAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1a3XLbuBW+zj4Fhhcde2NJBEmQUipnJ3a608x4N5k62+n0JgORkISYIlkCtOVMLnrZN+gj9EH6AH2HPknPAUiJkvyjH7tjZyUQBHAOvu/84Ec7/Gk+S8m1KJXMs1OHdl2HiCzOE5lNTp1Kjzt956e3PwwnIp+IUcnJOC9nXJ86QddzluOg1vXNYJmcOoxHgrnjccfj7qgTjEa8w5Mk7IyTMGaDOBn0uXAImSv5Jst/5TOhCh6Ly3gqZvwij7k2MqdaF296vZubm26jvZuXk95kMurOVeIQmHmmTp364Q2IWxl045vunuvS3l9+ubDiOzJTmmcx6EdUlXz7w6vhjcyS/IbcyERPT53ICx0yFXIyBZgs8B3Sw04FYC1ErOW1UDC0VTWY9axwTDeeYfsr+0TSBRyHJPJaJqI8ddyu349c5vkBZYMoGoQ0ckheSpHpujOtlfYaccNrKW6sXHwyKgN3AOOupZKjVJw6Y54qgCWzcQmUwozKCqpK36ZixMumvpwQPYF/0EF+EygLbGd5ANBh/4Sy/knkuieMuXYubcUO0XmeGqkuYQPy/TvxXM8lJ1hQW3hQhKFtcu0717eFZ4vAFsz2CezwwHYNbJ/A9kEj3Iuzri+B1i9WkDY4/TZOCvjwE8LHELCGs9/CSRHEd0Jx9qbwCc6bmvljEdTV0FYjU1DXFrRu7OOX4Ss8EJG/FyLa0mr94X6lG/7SaAwHg+01egfhXKD0+nRTp8fuQXkguY1SytpBAbGA/5nPhkp/J5z3UruDxjA4JPb3UBi5K2HfxLwtaV0+RMOTTWrYa7LhsJ4QUVPsW7u0FjOFU/QHJjkRShgEbxhBLmGEDqCIMIg9QhkJGFRpn4RYRsTHuA2IT/oE+1GfmBTE+vAVmJgOCQNZ+DKywU38gDCfUJO4AgIsEJP8gBPPhx6MEQaDUDtFtX5IghAqfp8EMEFMexGmFh/GQR2Ue8SnxMexNCJeSEKPRJg6aYAZNezj3EGoR0KXhDgUcifkTZszYUSf+IgGoqDIlVyQOxVpsbCK4VFmRaVXuItnSfOo87XeSR5fna1xLbjSzTN0ggVruS7aBWxl2Xw1TPlIpLC5uEQ3IOSapxjlRv44zzRpXMCz7yYlL6YyVpdCaxilyFd+zS+4FvOfobdqJmhUm9V8KKo4lYnk2Z/BR1AECiTN4m5yV7O4+1FktcR5XiaXtwoch8z/KsocEo7fHbT+qMsccts0Dbpu68/DLBXz1CyjEWu3gQlu6yYWrgxqAIrrBTQ+F6rhclJiyNXsY+WDOsvT5asil5k+54WuSrNTgymUCOpdNkmF4daYHPY88dUon19aUn0r6/NtATXXTmA0Oc/TvCQQkB4DkJO6HNnS9MGZLXq5po9reriNlWSyaKcDz/Qw5ciWpheY3U6tRkobmNRt1EhlUg0IbzuZ8RncQVWZ1Be2MlPgoTK+WmLFEb9WsxE4XD1wVSh9XOhWIoe9NRcbXokyE6l1pAxsWeWVsp698M5Xw0qJT1xP32XJn8QEQvITx6yoQbTtupxxImI5g4H2fU0eR8P+BlO1bxMxKUWDMDWbY0utaXXbbr3x2oj6ucxnH7Lrz+A1a1Md9ho8QxWXskDnJCNI01di6X+JVBySfNIeB+AVoIgx4QCRGkl0CK/0NC/N/hfCFkqM0VTMYLNLtHHErJqJUsYLk4y/xGYrDdOq6pnDNrFbzx5tQvLRV8gpa6ZcMgjNd7qrcWyeFlOOm3BauyW/FeUKQUbex/FYCU3msPBhFMPgoNX6S57UU6ulqBT39mQmM6NsxudmnwKPfKTytNJwvgGLZcvzjZ17nZeoAYjaKIvwCRQGPj6M5bzFO1Apv4GTrXrMMrI0JMsrODIos/PSdaCbhz/KJBHZYsI8AyczpoK0V5ggJJCphY2UxcgC6DEZpuUftfm2MKRaNyTd245NcmoSz+52DKi1o7+7HQ+wIqX/VyvuY8R5UYIuFFJbAEwIL6E8mh+TUxLn6sgjP5L//B2+IDrhe35s1/tVBxhXmYl+ZynoYVO38iNkj0RaJND9Y92b7xLQ7oOOsDS1uy/fD7OmatbUnayp7VlTh7I22iV8noI1f2vWVpCPYPcu+BI4X08Xy+B4urT/MN5luvCZiV+fPsRGDFswZN+8O+dlKUW5G+bR02He18YtzL7B3PG2xnzGFZzmsoRcyglPd4OePI+59wJu1/gw2hr455Jnaia1FgZ7tit4sQ6+FdW7oqdev4Xf1PZloM+2ZuDi8mwv5OMnRG7tTl171GB0f+AoY1vkv92PfGNVgKOqpvXK8Lu/Vbn+/VETM6/pMfn3P0mdNgj8ncKnqb4mSPBrgspsS8vlrCRnczFBdc6q7q0Xk8MDaoM2pXmpP+FhlSDXMD5iA+YOPNcLmD/o9wc2yXYHQRh4fRZR/A7BnN/srxGP8vuu5vbI7TLSw+3JCenQLjtuliRzVL5r3a0bFnI2eGpuBp9jndl0MDysqZok17OLDwJpU/FqaCaNx/mVqxP7du2k9zBvZw1v9DDezl4Ub9ET8xbnsxmubpm5wbwUE3zvLO/OuGs8kFMkwoKsdNMwsdJqGRs8qlpaQ9TkkUhdEnn3rk+S//7jX+SOHfNTLA8dvOHGFfJOW/h32MJ0R5sEg9U/Y5jaWPdvKVnjh97dJx/gOcVDzYcM71CE2UFv3rpcCVHgddfHzCRP/PVyfauxktk/wQE2T8jR5+PHI+h8EUFN/Li7Bs/5iwoe1pjsmVLO+w3C6K6EvX+BhNEnImybXPPe5przjVwz3S3XTF9yrqkPIf7dltjINXSZa4wdOtY0Ly21vJsVqdQVwDh6t5ldHtwxyxd2VmD2Jo1tfzR+LzSXqXo8R1R1jqjsJQpu6n5cvUqZw+cIb6Fe463K8XZXKtVjeePRO5XxEx4+nv0qKq1ZTB9nsbMDi+mhF1NP6o/PzmJRs1hYFo/Mxd5rWLSQzKMtL/OKQzlLnu1w9nBy3OMC9IvXXIF+8SxnDWXb3XvC+APJ+vqYg73Qm8+vz5bh97kNq/M73f4u6A/ZtUjzotj4caHX/lXQ/Epf/798b/8HUEsHCNegTMr8CAAAeygAAFBLAQIUABQACAgIAFpyDUtFzN5dGgAAABgAAAAWAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAWnINS9egTMr8CAAAeygAAAwAAAAAAAAAAAAAAAAAXgAAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAH4AAACUCQAAAAA="></article> 
-</center> 
-</html> 
- 
- 
-Some things to try: 
-  * Set <fc #ff0000>\$f_s\$ at 10</fc>  and <fc #4682b4>\$f_c\$ at 200</fc> and check only the transmitted signal.  You can easily imagine what the envelope (the baseband signal) should be that produced that signal.  But... 
-  * Decrease <fc #4682b4>\$f_c\$</fc> slowly.  At some point (around 20 or 30) the baseband signal becomes unrecoverable.  This illustrates the point that to transmit a high frequency baseband, a higher frequency carrier is needed (at least 3 to 4 times the frequency of the baseband signal.  This is why with digital signals, the higher the transfer speed, the higher the carrier frequency needs to be. 
- 
-===== Mixer ===== 
-Later on, we'll see that a //mixer// is an electronic component that multiplies two waves together, resulting in four different frequencies: \$f_1, f_2, f_1+f_2, \text{ and } f_1 - f_2\$.  Although it's not modulation, the math is very similar to the way AM is created, so this is a good place to have a look at it.  So let's multiply two very general waves with the following properties: 
-  * Amplitudes \$A_1\$ and \$A_2\$ 
-  * Frequencies \$f_1\$ and \$f_2\$ 
-  * Phases (horizontal shift) \$\phi_1\$ and \$\phi_2\$ 
-  * DC components (vertical shift) \$c_1\$ and \$c_2\$  
- 
-<WRAP centeralign> 
- 
-\begin{align} 
-\Big( A_1 \cos(2 \pi f_1 t + \phi_1) + c_1 \Big) \times & \Big( A_2 \cos(2 \pi f_2 t + \phi_2) + c_2 \Big) \\ \\ 
-= & A_1 A_2 \cos(2 \pi f_1 t + \phi_1) \cos(2 \pi f_2 t + \phi_2 ) \\ 
-& + c_2 A_1 \cos(2 \pi f_1 t + \phi_1 ) + c_1 A_2 \cos(2 \pi f_2 t + \phi_2) +  c_1 c_2   \\ \\ 
-= & \frac{A_1 A_2}{2} \cos(2 \pi (f_1+f_2) t + (\phi_1+\phi_2)) + \frac{A_1 A_2}{2} \cos(2 \pi (f_1-f_2) t + (\phi_1-\phi_2))  \\ 
-& + c_2 A_1 \cos(2 \pi f_1 t + \phi_1 ) + c_1 A_2 \cos(2 \pi f_2 t + \phi_2) +  c_1 c_2   
-\end{align} 
- 
-</WRAP> 
- 
-The last line looks like a real mess, but all it says is that the result is: 
-  * A wave with amplitude \$\frac{A_1 A_2}{2}\$, frequency \$f_1 + f_2\$, and phase \$\phi_1 + \phi_2\$ 
-  * A wave with amplitude \$\frac{A_1 A_2}{2}\$, frequency \$f_1 - f_2\$, and phase \$\phi_1 - \phi_2\$ 
-  * A wave with amplitude \$c_2 A_1\$, frequency \$f_1\$, and phase \$\phi_1\$ 
-  * A wave with amplitude \$c_1 A_2\$, frequency \$f_1\$, and phase \$\phi_2\$ 
-  * A DC component of \$c_1 c_2\$ 
- 
-A mixer is useful to raise or lower the frequency of a signal.  For example, if a signal at 13 Mhz is mixed with a local oscillator signal at 14 MHz, two new signals will be produced (in addition to the original two): one at 1 Mhz and the other at 27 Mhz.  If we want the higher one, we can put the result through a high pass filter, which will discard the unwanted signals.  
- 
-====== FM ====== 
-Mathematically, FM is less intuitive and more complicated than AM to understand.  The first step is to modulate the frequency by adding a scaled baseband function to it: 
- 
-<WRAP centeralign> 
-\$$2\pi f_c \quad \rightarrow \quad 2\pi f_c + 2\pi k s(t)\$$. 
-</WRAP> 
- 
-  * Here, \$f_c\$ is the frequency of the carrier, which is a constant (this is important), 
-  * and \$k\$ is a scaling factor we can use to decide how much of a variation we allow the baseband signal to impart on the carrier frequency.  When \$k = 0\$, there is no modulation, and the greater \$k\$ becomes, the bigger the effect is. 
- 
-<WRAP round alert box center 80%> 
-Now, it might be tempting to simply substitute this sum in the wave like so: 
- 
-<WRAP centeralign> 
-\$$ \cos(2\pi f_c t) \quad \rightarrow \quad \cos\Big(\big(2\pi f_c + 2\pi k s(t)\big) t\Big) \$$ 
-</WRAP> 
-but that's not quite right because the frequency is derived from the change in angle.   
-</WRAP> 
- 
-To solve this properly, we need some calculus and deduce the angle from our new frequency: 
- 
-<WRAP centeralign> 
-\$$ \frac{d}{dt}\theta(t) = 2\pi f_c + 2\pi k s(t) \qquad  \Rightarrow \qquad \theta(t) = 2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau \$$ 
-</WRAP> 
- 
-The frequency modulated transmission is actually given by: 
- 
-<WRAP centeralign> 
-\$$ \cos\Big(2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau\Big) \$$ 
-</WRAP> 
- 
-In our particular example, with \$s(t) = \cos(2 \pi f_s t)\$, the modulated radio signal becomes: 
- 
-<WRAP centeralign> 
- 
-\begin{align} 
-\cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}s(\tau)d\tau\Big) &= \cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}\cos(2 \pi f_s \tau)d\tau\Big) \\ 
-                 & \cos\Big(2 \pi f_c t + k \sin(2 \pi f_s t)\Big) 
-\end{align} 
- 
-</WRAP> 
- 
-For more details about FM, see: [[http://www.ece.umd.edu/~tretter/commlab/c6713slides/ch8.pdf]] 
- 
-Use this animation to see what happens when you vary the individual frequencies. You can use the check boxes to show or hide different waves. 
- 
-<html> 
-<center> 
-<article class="geogebraweb" data-param-width="700" data-param-height="405"  
-data-param-showResetIcon="false" data-param-enableLabelDrags="false" data-param-showMenuBar="false" data-param-showToolBar="false" data-param-showAlgebraInput="false" data-param-useBrowserForJS="true" data-param-ggbbase64="UEsDBBQACAgIACl0DUsAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiu5QIAUEsHCEXM3l0aAAAAGAAAAFBLAwQUAAgICAApdA1LAAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbM1a224byRF99n5FYZ7kRCSn50bSIL2QZCzWgHdtRE4Q5GXRM9MkezU3TDclyvBDHvMn+Zz8Q74k1ZfhDC+SSIlJZFvsufTtnKo6XUV58uMqz+CW1YKXxdQhfdcBViRlyov51FnKWW/k/Pj+h8mclXMW1xRmZZ1TOXWCvue04/Cu7+vBPJ06IR2y0J3Neh51414Qx7RH0zTqzdIoCcdJOh5R5gCsBH9XlL/SnImKJuw6WbCcfioTKvWcCymrd4PB3d1dv1m9X9bzwXwe91cidQB3XoipYy/e4XQbg+583d1zXTL46y+fzPQ9XghJiwTXV6iW/P0PbyZ3vEjLO7jjqVxMnaEXObBgfL5AmGHgOzBQnSrEWrFE8lsmcGjnVmOWeeXobrRQ79+YK8jWcBxI+S1PWT113H7oEn84DIgbRCOfjEMHypqzQtq+xK45aGab3HJ2Z6ZVV3rFwB0P0QRc8DhjU2dGM4GoeDGrkVHcUL3EWyHvMxbTurlv90PO8S924N+YmgtNZ2iYOr7vn4+D86Hrnoeha7bSXdcBWZaZntSFcAzfv4Pnei6cq4aYxsMmiswr1zxzfdN4pglME5o+gRkemK6B6ROYPsoED8K09y1O+2ADaAPT78IkiE/9RPij8W/hHHVwEgXiOxC1e934oPZN9P5VE9jbyNwOdUNc0xD7cqQ+NF/RCxH5z0JEOqsad3h40R13aVaMxuPDV/RehLNFGQW7a3rhAyhfSG6zKAk71OJa+p/+2VnSPwrng9QesaIi5Pmh/4wFh+5G2Dcxb1pi28doONmmJoNGDCd2QyAWqq91aclyobboj7U4AQFUW4iGqCUhkDE2QxXEHpAQghBvyQgi1Q7BV3EbgA8jUP2ID1qCwhF+BDqmIwhxLvVwaIIb/ABCH4gWrgCQBdDih5x4PvYIQwhxkFqdqGX9CIIIb/wRBLhBJXtDJS0+jsN7XNwDn4CvxpIheBFEHgyVdJJAKWo0UnvHST2IXIjUUNRO1E2jmThiBL5Cg1FQlYKvyV2wrFpbRfPIi2opN7hL8rS5lOVW77RMbi63uGZUyOYaO+F51Z6K5vzaODTfTDIaswxTi2vlBgC3NFNRrueflYWExgU882xe02rBE3HNpMRRAn6nt/QTlWz1E/YWzQb10vosn7BlkvGU0+Iv6CNqCjUhNEe71q7maMcD2KySlGWdXt8LdBxY/Y3VJeqW3x93/hAXT+h7+yoI+m7nD/q8SGimD9Fh2H2FFri3r8JoY0yDj92ukdEVEw2V81pFnCVf3XwUl2XWPqpKXsgrWsllrdM01MlaYboo5hnT1GqLY8KT3MTl6tpw6pu5vt5XeOeaDcTzqzIra8B49ELEOLdtbFrdR+1s3cvVfVzdw22MxNP1ezL2dA/dxqbVvdDqZmsWKWlgErdZhgutNDh518e0y6j0aVlw+cnc5AIdlCc3LVY14tdlHqO/2YGbk5KnJz1oyslgy8MmN6wuWGb8qEBbLsulMI69ds43k6VgX6hcXBTpn9gcI/ILVaIocWrTtd1xyhKe40Dz3JJHlWH/jFs1T1M2r1mDMNOZsaFWv3W7Xr3zWE/1U13mH4vbr+g1W1udDBo8E5HUvFLOCTGq9A1r/S/lgqLGp91xCF4gikTpDRIpFYkO0KVclLVOfjFqsVUhmrEcU12Q2hGLZc5qnqxNMvst0Xk0bmtpd45ZYt/uXtkEyvh3lJQtU7YM4uu97qodm2bVgqoMnFi3pPes3iBIz/d5NhNMwgrPPRXFKuo7b38pU7s1O4vIVGIPOS/0Yjld6TQFL2ksymwpsbhBixVtcWP2bmWJaIBqNTKO1BUuaKqpGV91eEcq+Td0sk2PaSNLolbeYMEgdOIlbaDri595mrJivWFaoJNpU6HqVToIAYWamUhZj6yQHq0wHf+w5jvAkGLbkOTZdmzEqRGe4+0YEGNH/1g7hs+xYmitSP63VnyOEVdVjWupSawFUFvxIbZnq7cwhaQUZx78Af71d/xAo+Ln6q057jcdYLYsdPQ77UQ7pm6ybesirUCifKTcQMH+n233+BhPcB/1hNbW7iOE+48R/rDvx5iHMtoip9ue30F6Ogl7HHDr+n5ofHH0GB0JphOKfv3sitY1Z/VxoONt0C2e04X7kZh73sGYL6nAwqRI4ZrPaXYc9PR00N2XAjfnVbhf5/YB/1rTQuRcSqaxF0+B19nnGsXFU0F+Wq/egbKtgepE2FFBsk8FbYokFGuu1ese6eNevpkvQs3XfgqtyqA3ihXzdCu5elxWL62snhEYoI4m56AWe+tssrorq5t0X/6f6d6gzA1PS1pS5rmKwEJ/YXDN5uq505aq1FX+BpQoHgzGpWxezM1sdo4dGoWdreFpvkvkA9G5/2ji8O9//BPoLtXEG3XI1ndHB3FPfaGEzEZ7TeE/5L3WJN/M1TB85KALG7/z9qcWSGym4uVjoYoUpg/23bLmhrFK1ZOfCy0i6ncD2/q3ITVfMEMsUzj7+vbpeLlq4sXte2ETMu6x8XL1quKFeGFjqP+SynzYxxo5lrUPr5I1ciLWDpGZD0ZmrnZkZvEbOU5o1IBXLDU2X+h54WFaQ1qt0cboNRZ6bVpzkVcZl0sEcnaxKzePpnP8hOn7KWwUmtrV338c7MvpPjBJeSaOq9hvTlevP5TFHlqtk8BU6+Njq3XvOdX6yPp0NOxU66b3ay/WK6v31d5iPVHFOvwRbrAVvNit4w8r5KsnBOzJOj49VZ1zWBUfHlzF7/CZWD6Th/k8jLPkpZzt0fuTna/H+2+XtUH3u179qxf73zPe/wdQSwcIpLlupjUIAABOIgAAUEsBAhQAFAAICAgAKXQNS0XM3l0aAAAAGAAAABYAAAAAAAAAAAAAAAAAAAAAAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgICAApdA1LpLlupjUIAABOIgAADAAAAAAAAAAAAAAAAABeAAAAZ2VvZ2VicmEueG1sUEsFBgAAAAACAAIAfgAAAM0IAAAAAA=="></article> 
-</center> 
-</html> 
- 
-Some things to try: 
-  * Set <fc #ff0000>\$f_s\$ at 10</fc> and <fc #4682b4>\$f_c\$ at 200</fc> and check only the transmitted signal.  Notice how when the <fc #ff0000>baseband</fc> is high, the **transmitted wave** is "tight" (ie, its frequency is high), and vise-versa.  But... 
-  * Decrease <fc #4682b4>\$f_c\$</fc> slowly.  At some point (around 20 or 30) that pattern becomes unnoticeable.  Again, this illustrates the point that to transmit a high frequency baseband, a higher frequency carrier is needed (at least 3 to 4 times the frequency of the baseband signal.  This is why with digital signals, the higher the transfer speed, the higher the carrier frequency needs to be. 
-  * Increase and decrease **k** to see the effect it has on the transmitted wave.  The greater **k**, the more bandwidth the resulting signal uses.  This dictates the difference between "Narrow Band FM" and "Wide Band FM". 
- 
- 
-See [[https://electronicspost.com/narrow-band-fm-wide-band-fm/]] 
-====== PM ====== 
-//Phase Modulation// is not usually discussed in ham radio courses, but after understanding FM, we pretty much get PM for free...  Recall that for the wave \$\cos(2\pi f + \phi)\$, \$f\$ is the frequency and \$\phi\$ is the phase shift.  For a pure tone, both of these are constant. 
-  * With FM, we saw that modulating the frequency led to  \$\cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}s(\tau)d\tau\Big)\$. 
-  * With PM, it leads to \$\cos\Big(2 \pi f_c t + 2\pi k s(t)\Big)\$ 
- 
-Essentially, with PM, we simply let \$\phi\$ vary with the baseband \$s(t)\$.  But the thing to notice is that PM looks a lot like FM.  In fact, an FM signal modulated by \$s(t)\$ is the same as a PM signal modulated by \$\int_0^{t}s(\tau)d\tau\$.  In other words, the receiver needs to know if the signal was modulated in FM or PM since both wave forms look similar. 
- 
- 
-[[..:sections|{{/back.png }}]] [[mathbasics |{{  /next.png}}]] 
howto/hambasics/sections/wavemodulationmath.1602083076.txt.gz · Last modified: by va7fi