User Tools

Site Tools


howto:hambasics:sections:wavemodulationmath

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
howto:hambasics:sections:wavemodulationmath [2020/11/08 00:37] va7fihowto:hambasics:sections:wavemodulationmath [2021/01/03 08:05] (current) va7fi
Line 1: Line 1:
 ~~NOTOC~~ ~~NOTOC~~
-====== More Details: AM / FM ====== 
  
 +====== More Details: AM / FM ======
 Here are a few more details about the AM, SSB, and FM modulation schemes introduced on the [[wavemodulation |Wave Modulation]] page. Here are a few more details about the AM, SSB, and FM modulation schemes introduced on the [[wavemodulation |Wave Modulation]] page.
  
Line 14: Line 14:
  
 ====== AM ====== ====== AM ======
- 
 The resulting //Amplitude Modulated// radio wave is the **product** of the vertically shifted baseband signal and the radio carrier, which is also equal to the **sum** of the carrier and the two side bands: The resulting //Amplitude Modulated// radio wave is the **product** of the vertically shifted baseband signal and the radio carrier, which is also equal to the **sum** of the carrier and the two side bands:
  
-<WRAP centeralign> +\begin{align*}
- +
-\begin{align}+
 \Big(s(t)+1\Big) \times c(t) &= \Big(\cos(2 \pi f_s t) + 1\Big) \times \cos(2 \pi f_c t) \\ \Big(s(t)+1\Big) \times c(t) &= \Big(\cos(2 \pi f_s t) + 1\Big) \times \cos(2 \pi f_c t) \\
                  & \cos(2 \pi f_s t)\cos(2 \pi f_c t) + \cos(2 \pi f_c t)\\                  & \cos(2 \pi f_s t)\cos(2 \pi f_c t) + \cos(2 \pi f_c t)\\
                  &= \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c + f_s) t\Big)}_\text{USB} + \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c - f_s) t\Big)}_\text{LSB} + \underbrace{\cos(2 \pi f_c t)}_\text{Carrier}                  &= \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c + f_s) t\Big)}_\text{USB} + \underbrace{\frac{1}{2} \cos\Big(2 \pi (f_c - f_s) t\Big)}_\text{LSB} + \underbrace{\cos(2 \pi f_c t)}_\text{Carrier}
-\end{align} +\end{align*}
- +
-</WRAP>+
  
 In line 1, I distributed the bracket, which, in line 2, gave us the carrier (last term) and a product (first term).  To expend this product into the sum of the two side bands (line 3),  I added these two trig identities together: In line 1, I distributed the bracket, which, in line 2, gave us the carrier (last term) and a product (first term).  To expend this product into the sum of the two side bands (line 3),  I added these two trig identities together:
  
-<WRAP centeralign> +\begin{align*}
- +
-\begin{align}+
 \cos(A+B)  =& \cos(A)\cos(B) - \sin(A)\sin(B) \\ \cos(A+B)  =& \cos(A)\cos(B) - \sin(A)\sin(B) \\
-\cos(A-B)  =& \cos(A)\cos(B) + \sin(A)\sin(B) \\ +\cos(A-B)  =& \cos(A)\cos(B) + \sin(A)\sin(B) 
-\end{align} +\end{align*}
- +
-</WRAP>+
  
 Which gives: Which gives:
  
-<WRAP centeralign> +\begin{align*}
- +
-\begin{align}+
 &\cos(A+B) + \cos(A-B) = 2 \cos(A)\cos(B) \\ &\cos(A+B) + \cos(A-B) = 2 \cos(A)\cos(B) \\
 \Rightarrow &\cos(A)\cos(B) = \frac{1}{2}\cos(A+B) + \frac{1}{2}\cos(A-B) \Rightarrow &\cos(A)\cos(B) = \frac{1}{2}\cos(A+B) + \frac{1}{2}\cos(A-B)
-\end{align} +\end{align*}
- +
-</WRAP>+
  
 Use this animation to see what happens when you vary the individual frequencies.  You can use the check boxes to show or hide different waves. Use this animation to see what happens when you vary the individual frequencies.  You can use the check boxes to show or hide different waves.
  
-{{ggb>howto/hambasics/sections/am.ggb 700,405}}+FIXME: animation in wrong place 
 +{{ggb>/howto/hambasics/sections/am.ggb 800,405}}
  
 Some things to try: Some things to try:
Line 64: Line 52:
   * DC components (vertical shift) \$c_1\$ and \$c_2\$    * DC components (vertical shift) \$c_1\$ and \$c_2\$ 
  
-<WRAP centeralign> +\begin{align*}
- +
-\begin{align}+
 \Big( A_1 \cos(2 \pi f_1 t + \phi_1) + c_1 \Big) \times & \Big( A_2 \cos(2 \pi f_2 t + \phi_2) + c_2 \Big) \\ \\ \Big( A_1 \cos(2 \pi f_1 t + \phi_1) + c_1 \Big) \times & \Big( A_2 \cos(2 \pi f_2 t + \phi_2) + c_2 \Big) \\ \\
 = & A_1 A_2 \cos(2 \pi f_1 t + \phi_1) \cos(2 \pi f_2 t + \phi_2 ) \\ = & A_1 A_2 \cos(2 \pi f_1 t + \phi_1) \cos(2 \pi f_2 t + \phi_2 ) \\
Line 72: Line 58:
 = & \frac{A_1 A_2}{2} \cos(2 \pi (f_1+f_2) t + (\phi_1+\phi_2)) + \frac{A_1 A_2}{2} \cos(2 \pi (f_1-f_2) t + (\phi_1-\phi_2))  \\ = & \frac{A_1 A_2}{2} \cos(2 \pi (f_1+f_2) t + (\phi_1+\phi_2)) + \frac{A_1 A_2}{2} \cos(2 \pi (f_1-f_2) t + (\phi_1-\phi_2))  \\
 & + c_2 A_1 \cos(2 \pi f_1 t + \phi_1 ) + c_1 A_2 \cos(2 \pi f_2 t + \phi_2) +  c_1 c_2   & + c_2 A_1 \cos(2 \pi f_1 t + \phi_1 ) + c_1 A_2 \cos(2 \pi f_2 t + \phi_2) +  c_1 c_2  
-\end{align} +\end{align*}
- +
-</WRAP>+
  
 The last line looks like a real mess, but all it says is that the result is: The last line looks like a real mess, but all it says is that the result is:
Line 88: Line 72:
 Mathematically, FM is less intuitive and more complicated than AM to understand.  The first step is to modulate the frequency by adding a scaled baseband function to it: Mathematically, FM is less intuitive and more complicated than AM to understand.  The first step is to modulate the frequency by adding a scaled baseband function to it:
  
-<WRAP centeralign> +\$$2\pi f_c \quad \rightarrow \quad 2\pi f_c + 2\pi k s(t)\$$
-\$$2\pi f_c \quad \rightarrow \quad 2\pi f_c + 2\pi k s(t)\$$+
-</WRAP>+
  
   * Here, \$f_c\$ is the frequency of the carrier, which is a constant (this is important),   * Here, \$f_c\$ is the frequency of the carrier, which is a constant (this is important),
Line 98: Line 80:
 Now, it might be tempting to simply substitute this sum in the wave like so: Now, it might be tempting to simply substitute this sum in the wave like so:
  
-<WRAP centeralign> 
 \$$ \cos(2\pi f_c t) \quad \rightarrow \quad \cos\Big(\big(2\pi f_c + 2\pi k s(t)\big) t\Big) \$$ \$$ \cos(2\pi f_c t) \quad \rightarrow \quad \cos\Big(\big(2\pi f_c + 2\pi k s(t)\big) t\Big) \$$
-</WRAP>+
 but that's not quite right because the frequency is derived from the change in angle.   but that's not quite right because the frequency is derived from the change in angle.  
 </WRAP> </WRAP>
Line 106: Line 87:
 To solve this properly, we need some calculus and deduce the angle from our new frequency: To solve this properly, we need some calculus and deduce the angle from our new frequency:
  
-<WRAP centeralign> 
 \$$ \frac{d}{dt}\theta(t) = 2\pi f_c + 2\pi k s(t) \qquad  \Rightarrow \qquad \theta(t) = 2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau \$$ \$$ \frac{d}{dt}\theta(t) = 2\pi f_c + 2\pi k s(t) \qquad  \Rightarrow \qquad \theta(t) = 2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau \$$
-</WRAP>+
  
 The frequency modulated transmission is actually given by: The frequency modulated transmission is actually given by:
  
-<WRAP centeralign> 
 \$$ \cos\Big(2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau\Big) \$$ \$$ \cos\Big(2\pi f_c t + 2\pi k \int_0^{t}s(\tau) d\tau\Big) \$$
-</WRAP>+
  
 In our particular example, with \$s(t) = \cos(2 \pi f_s t)\$, the modulated radio signal becomes: In our particular example, with \$s(t) = \cos(2 \pi f_s t)\$, the modulated radio signal becomes:
  
-<WRAP centeralign> +\begin{align*}
- +
-\begin{align}+
 \cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}s(\tau)d\tau\Big) &= \cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}\cos(2 \pi f_s \tau)d\tau\Big) \\ \cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}s(\tau)d\tau\Big) &= \cos\Big(2 \pi f_c t + 2\pi k \int_0^{t}\cos(2 \pi f_s \tau)d\tau\Big) \\
                  & \cos\Big(2 \pi f_c t + k \sin(2 \pi f_s t)\Big)                  & \cos\Big(2 \pi f_c t + k \sin(2 \pi f_s t)\Big)
-\end{align}+\end{align*}
  
-</WRAP> 
  
 For more details about FM, see: [[http://www.ece.umd.edu/~tretter/commlab/c6713slides/ch8.pdf]] For more details about FM, see: [[http://www.ece.umd.edu/~tretter/commlab/c6713slides/ch8.pdf]]
Line 131: Line 107:
 Use this animation to see what happens when you vary the individual frequencies. You can use the check boxes to show or hide different waves. Use this animation to see what happens when you vary the individual frequencies. You can use the check boxes to show or hide different waves.
  
-{{ggb>howto/hambasics/sections/am.ggb 700,405}}+FIXME: animation in wrong place 
 +{{ggb>/howto/hambasics/sections/fm.ggb 800,350}} 
  
 Some things to try: Some things to try:
Line 137: Line 115:
   * Decrease <fc #4682b4>\$f_c\$</fc> slowly.  At some point (around 20 or 30) that pattern becomes unnoticeable.  Again, this illustrates the point that to transmit a high frequency baseband, a higher frequency carrier is needed (at least 3 to 4 times the frequency of the baseband signal.  This is why with digital signals, the higher the transfer speed, the higher the carrier frequency needs to be.   * Decrease <fc #4682b4>\$f_c\$</fc> slowly.  At some point (around 20 or 30) that pattern becomes unnoticeable.  Again, this illustrates the point that to transmit a high frequency baseband, a higher frequency carrier is needed (at least 3 to 4 times the frequency of the baseband signal.  This is why with digital signals, the higher the transfer speed, the higher the carrier frequency needs to be.
   * Increase and decrease **k** to see the effect it has on the transmitted wave.  The greater **k**, the more bandwidth the resulting signal uses.  This dictates the difference between "Narrow Band FM" and "Wide Band FM".   * Increase and decrease **k** to see the effect it has on the transmitted wave.  The greater **k**, the more bandwidth the resulting signal uses.  This dictates the difference between "Narrow Band FM" and "Wide Band FM".
- 
  
 See [[https://electronicspost.com/narrow-band-fm-wide-band-fm/]] See [[https://electronicspost.com/narrow-band-fm-wide-band-fm/]]
 +
 ====== PM ====== ====== PM ======
 //Phase Modulation// is not usually discussed in ham radio courses, but after understanding FM, we pretty much get PM for free...  Recall that for the wave \$\cos(2\pi f + \phi)\$, \$f\$ is the frequency and \$\phi\$ is the phase shift.  For a pure tone, both of these are constant. //Phase Modulation// is not usually discussed in ham radio courses, but after understanding FM, we pretty much get PM for free...  Recall that for the wave \$\cos(2\pi f + \phi)\$, \$f\$ is the frequency and \$\phi\$ is the phase shift.  For a pure tone, both of these are constant.
howto/hambasics/sections/wavemodulationmath.1604824624.txt.gz · Last modified: 2020/11/08 00:37 by va7fi